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Outline

e Image reconstruction as an inverse problem
e Imaging operators and modalities

e Discretization of inverse problems




Image Reconstruction as an Inverse Problem

e Linear forward model y=Hx+n

noise
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NI
‘ n
Integral operator
£ Y
object data
Given y, reconstruct x Why is this problem hard?

“Invert H" : e
— noise amplification

— difficult to invert H (large or non-square)

— all interesting inverse problems are ill-posed

e Backprojection (poor man's solution): T = H'y

What are some examples of inverse problems?



Imaging Operators and Modalities

e Fourier Transform
e Windowing
e Convolution

e Radon Transform



Mathematical Formulation of Forward Models

o Unknown object: s(x), £ € R? (or more generally = ¢ RY)

defined in the analog domain

s € L*(R?) (finite-energy objects)

e Imaging operator/forward model: H{s} = y € RM

from analog to discrete H: L2(R2) — RM

e Boundedness (BIBO) and linearity assumption:
IH{s}[2 < C|s] >
H{as1 + aass} = aqH{s1} + axH{s>}, for all 51,50 € L*(R?), 1,0 € R

= Ym = (M, §) = / Nm (x)s(x) da (Riesz representation theorem)
RQ

{nm }M_ . are called the analysis functions



Basic Operator: Fourier Transform

F: L*(R?) = L*(R?)
S(w) = F{s}Hw) = / s(w)e_j“’Tw dx

RQ

Reconstruction formula (inverse Fourier transform)

11 _ 1 $(w)ed*  duw
(@) = FHa}@) = g [ sl d

Exercise: What would be the analysis functions of the forward
model that samples the Fourier transform at {w,, }}_,?



Basic Operator: Windowing

W : L*(R?) — L*(R?)
W{si(z) = w(z)s(x)
w is a positive and bounded window function:

w(x) > 0 and w(x) < C for all x € R?

e Special case: Modulation

w(x) = elwo Structured lllumination Microscopy (SIM)



Magnetic Resonance Imaging
e Simplified forward model for MRI /W o= \

$(wp) = /R 2 s(z)e I9m® dg

(sampling of the Fourier transform)

e More-realistic forward model for MRI

S (W) = /R 2 w(z)s(x)e “n® dz

(sampling of the short-time (short-space?) Fourier transform)

(window models the effect of the coil)



Basic Operator: Convolution
H: L*(R?) — L*(R?)

H{s}(x) = (h+s)(x) = / h(@ — y)s(y) dy

RQ

Impulse response: h = H{j}

e Convolution as frequency-domain product: (h * s)(x) PR hw)§(w)

Exercise: What would be the analysis functions of the forward
model that samples the convolution at {x,, }}_,?



Basic Operator: Radon Transform

e Radon transform (line integrals)

Notation: @ = (cosf,sinf) € R?
A line in R? can be represented by all & € R? such that

Olx =t & xcosh + ysinf =t

Rolf}(t)= | f(x)s(0'x —1t)dw

RQ

sinogram

Exercise: What would be the analysis functions of the forward
model that samples the Radon transform at {(0,,,t,,)}¥_,?
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Panorama of Imaging Modalities

Modality Radiation Forward model Variations
2D or 3D tomography coherent x-ray Yi = Ro.x parallel,
t cone beam, spiral sampling
3D deconvolution —H brightfield, confocal
. o x ’ )
microscopy fluorescence Y light sheet
.= HW;z .
structured illumination fluorescence yl ¢ full 3D reCPnStrUCtlon’
microscopy (SIM) H: PSF of microscope non-sinusoidal patterns
W;: illumination pattern
Positron Emission . —H list mode
amma rays — g, T
Tomography (PET) g y Yi with time-of-flight
Magnetic resonance , _ if -unif
, : radio frequency = Fx uniform or non-uniform
imaging (MRI) 4 sampling in k space
Cardiac MRI yt,’i — Fthx gated or not,

(parallel, non-uniform)

radio frequency

W,: coil sensitivity

retrospective registration

Optical diffraction
tomography

coherent light

yi = W;Fz

with holography
or grating interferometry
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Discretization

e Discretization: How to turn the problem into linear algebra

e Examples

— Diffraction-limited convolution (Fluorescence microscopy)

- M

R

— (7

y=Hzx +n

noise

D
N

data
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Discretization: Finite-Dimensional Formulation

Selection of an appropriate basis of functions 8 : R* — R
with k € Q C Z? and || = N.

Assume, a priori, that  s(r) = Z s|k)Br(r) —

kel ) — .

Create a vector = (s[k])ren € RY

e Measurement model (image formation):

Y — / SV (r) dr + nfm] = (s.0) +nfm], m=1,.... M
R2

Nm: mth detector (analysis function)

n|m|: additive noise

Hloie = (s Bi) = / () B (7) dr

RQ

y=Hx+n

We have now reduced the problem to a linear algebra problem
(given x, we can synthesize s(7))

Reshape into H € RM*H:
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Examples of Basis Functions

Shift-invariant representation: fg(x) = B(x — k)
Separable generator: B(x) = B(x)5(y)

e Pixel basis:
B(x) = rect(x)

e Bilinear basis:

B(x) = (rect x rect)(x) = tri(x)
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e Bandlimited basis:

B(x) = sinc(x)
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Example 1: Diffraction-Limited Convolution

Hypothesis: hop(w) = 0 for ||w| > wo (diffraction-limited)

e Discretization
wo < 7 and representation in (separable) sinc basis k(@) = sinc(x — k)
Analysis functions: 7., (x) = hop(x — m)
Hlm x = (Nm(x),sinc(z — k))

— hQD(m — k)

(

) 2 (‘arecos (121) — 121 /1 (191)*) | for0 < ] < wo
hop(w) = ¢ ™ o o o B

\ 0, otherwise

e

Airy Disk Radial Profile




Example 2: Magnetic Resonance Imaging (MRI)

e Simplified forward model for MRI

A T

() = [ s@)ehda (@) = 0190

(sampling of the Fourier transform) suppose that ||w, ||z < 7
e Discretization in separable sinc basis

Hlim ke = (Nm(x),sinc(z — k))

= <ej‘“’;rn"’“', sinc(z — k)) = e Iwmk
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Example 3: Computed Tomography (CT)

e Radon transform (line integrals)

Notation: 8 = (cosf,sinf) € R?

Ko f1(t) = . [(2)0(0"x —t)da

Recall the Radon transform of a separable function (@) = ¢©1(x)p2(y):

Fo1¢}1(t) = wolt),

where

! ty, 1 t
v _\cosé’|g01 cos 0 \sim@\gp2 sin 0

H] ;. j),n = Zo{p(x —n)}(t;) = o, (t; —n'0;)
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Finite-Dimensional Inverse Problem

e Discretized forward model:

y=Hx+n

r c RY
HGRMXN
y € RM

n ¢ RM

e Inverse problem: How to efficiently recover x from y?
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