ECE 172A: Introduction to Image Processing Image Reconstruction: Part I

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

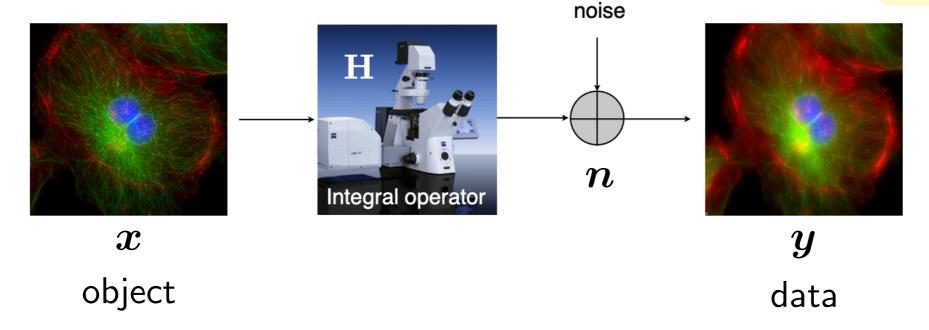
Outline

- Image reconstruction as an inverse problem
- Imaging operators and modalities
- Discretization of inverse problems

Image Reconstruction as an Inverse Problem

Linear forward model

$$y = \mathbf{H}x + n$$



Given y, reconstruct x

"invert H"

Why is this problem hard?

- noise amplification
- difficult to invert H (large or non-square)
- all interesting inverse problems are ill-posed
- ullet Backprojection (poor man's solution): $\widehat{oldsymbol{x}} = \mathbf{H}^\mathsf{T} oldsymbol{y}$

What are some examples of inverse problems?

Imaging Operators and Modalities

- Fourier Transform
- Windowing
- Convolution
- Radon Transform

Mathematical Formulation of Forward Models

• Unknown object: $s(m{x})$, $m{x} \in \mathbb{R}^2$ (or more generally $m{x} \in \mathbb{R}^d$) defined in the analog domain

$$s \in L^2(\mathbb{R}^2)$$
 (finite-energy objects)

- Imaging operator/forward model: $\mathrm{H}\{s\}=m{y}\in\mathbb{R}^M$ from analog to discrete $\mathrm{H}:L^2(\mathbb{R}^2)\to\mathbb{R}^M$
- Boundedness (BIBO) and linearity assumption:

$$\begin{aligned} &\|\mathbf{H}\{s\}\|_{2} \leq C\|s\|_{L^{2}} \\ &\mathbf{H}\{\alpha_{1}s_{1} + \alpha_{2}s_{2}\} = \alpha_{1}\mathbf{H}\{s_{1}\} + \alpha_{2}\mathbf{H}\{s_{2}\}, \text{ for all } s_{1}, s_{2} \in L^{2}(\mathbb{R}^{2}), \alpha_{1}, \alpha_{2} \in \mathbb{R} \\ &\Rightarrow y_{m} = \langle \eta_{m}, s \rangle = \int_{\mathbb{R}^{2}} \eta_{m}(\boldsymbol{x})s(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \end{aligned} \qquad \textit{(Riesz representation theorem)}$$

 $\{\eta_m\}_{m=1}^M$ are called the **analysis functions**

Basic Operator: Fourier Transform

$$\mathcal{F}: L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)$$

$$\hat{s}(\boldsymbol{\omega}) = \mathcal{F}\{s\}(\boldsymbol{\omega}) = \int_{\mathbb{R}^2} s(\boldsymbol{x}) e^{-j\boldsymbol{\omega}^\mathsf{T}\boldsymbol{x}} d\boldsymbol{x}$$

Reconstruction formula (inverse Fourier transform)

$$s(\boldsymbol{x}) = \mathcal{F}^{-1}\{\hat{s}\}(\boldsymbol{x}) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \hat{s}(\boldsymbol{\omega}) e^{j\boldsymbol{\omega}^\mathsf{T} \boldsymbol{x}} d\boldsymbol{\omega}$$

Exercise: What would be the analysis functions of the forward model that samples the Fourier transform at $\{\omega_m\}_{m=1}^M$?

Basic Operator: Windowing

$$W: L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)$$

$$W\{s\}(\boldsymbol{x}) = w(\boldsymbol{x})s(\boldsymbol{x})$$

w is a positive and bounded window function:

$$w(\boldsymbol{x}) \geq 0$$
 and $w(\boldsymbol{x}) \leq C$ for all $\boldsymbol{x} \in \mathbb{R}^2$

Special case: Modulation

$$w(\boldsymbol{x}) = \mathrm{e}^{\mathrm{j}\boldsymbol{\omega}_0^\mathsf{T}\boldsymbol{x}}$$

Structured Illumination Microscopy (SIM)

Magnetic Resonance Imaging

Simplified forward model for MRI

$$\hat{s}(\boldsymbol{\omega}_m) = \int_{\mathbb{R}^2} s(\boldsymbol{x}) e^{-j\boldsymbol{\omega}_m^\mathsf{T} \boldsymbol{x}} d\boldsymbol{x}$$

(sampling of the Fourier transform)

More-realistic forward model for MRI

$$\hat{s}_w(\boldsymbol{\omega}_m) = \int_{\mathbb{R}^2} w(\boldsymbol{x}) s(\boldsymbol{x}) e^{-j\boldsymbol{\omega}_m^\mathsf{T} \boldsymbol{x}} d\boldsymbol{x}$$

(sampling of the short-time (short-space?) Fourier transform) (window models the effect of the coil)

Basic Operator: Convolution

$$H: L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)$$

$$H\{s\}(\boldsymbol{x}) = (h*s)(\boldsymbol{x}) = \int_{\mathbb{R}^2} h(\boldsymbol{x} - \boldsymbol{y}) s(\boldsymbol{y}) d\boldsymbol{y}$$

Impulse response: $h = H\{\delta\}$

• Convolution as frequency-domain product: $(h*s)(x) \stackrel{\mathcal{F}}{\longleftrightarrow} \hat{h}(\omega)\hat{s}(\omega)$

Exercise: What would be the analysis functions of the forward model that samples the convolution at $\{x_m\}_{m=1}^M$?

Basic Operator: Radon Transform

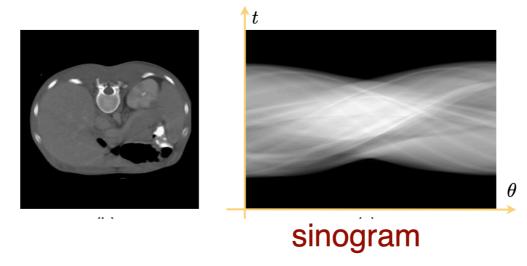
Radon transform (line integrals)

Notation: $\theta = (\cos \theta, \sin \theta) \in \mathbb{R}^2$

A line in \mathbb{R}^2 can be represented by all $oldsymbol{x} \in \mathbb{R}^2$ such that

$$\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} = t \qquad \Leftrightarrow \qquad x \cos \theta + y \sin \theta = t$$

$$\mathscr{R}_{\theta}\{f\}(t) = \int_{\mathbb{R}^2} f(\boldsymbol{x}) \delta(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} - t) d\boldsymbol{x}$$



Exercise: What would be the analysis functions of the forward model that samples the Radon transform at $\{(\theta_m, t_m)\}_{m=1}^M$?

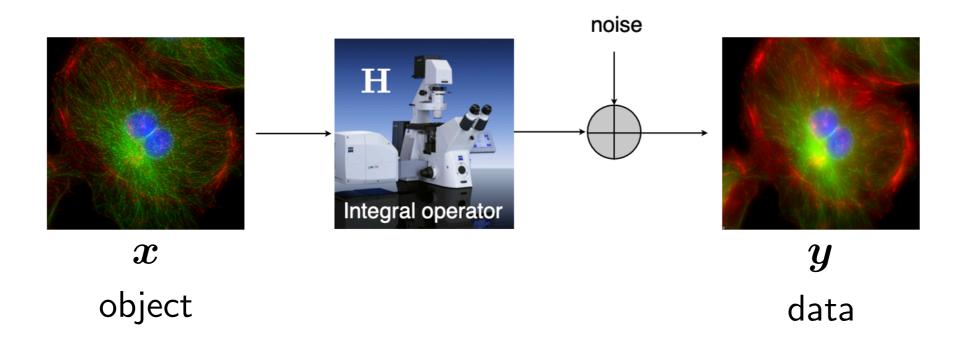
Panorama of Imaging Modalities

Modality	Radiation	Forward model	Variations
D or 3D tomography	coherent x-ray	$y_i = \mathrm{R}_{oldsymbol{ heta}_i} x$	parallel, cone beam, spiral sampling
3D deconvolution microscopy	fluorescence	y = Hx	brightfield, confocal, light sheet
structured illumination microscopy (SIM)	fluorescence	$y_i = \mathrm{HW}_i x$ H: PSF of microscope W_i : illumination pattern	full 3D reconstruction, non-sinusoidal patterns
Positron Emission Tomography (PET)	gamma rays	$y_i = \mathrm{H}_{oldsymbol{ heta}_i} x$	list mode with time-of-flight
Magnetic resonance imaging (MRI)	radio frequency	y = Fx	uniform or non-uniform sampling in k space
Cardiac MRI (parallel, non-uniform)	radio frequency	$y_{t,i} = \mathrm{F}_t \mathrm{W}_i x$ W_i : coil sensitivity	gated or not, retrospective registration
Optical diffraction tomography	coherent light	$y_i = \mathrm{W}_i \mathrm{F}_i x$	with holography or grating interferometry

Discretization

- Discretization: How to turn the problem into linear algebra
- Examples
 - Diffraction-limited convolution (Fluorescence microscopy)
 - MRI
 - CT

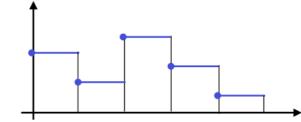
$$y = \mathbf{H}x + n$$



Discretization: Finite-Dimensional Formulation

Selection of an appropriate basis of functions $\beta_{\mathbf{k}}: \mathbb{R}^2 \to \mathbb{R}$ with ${\boldsymbol k}\in\Omega\subset{\mathbb Z}^2$ and $|\Omega|=N$.

Assume, a priori, that
$$s(r) = \sum_{k \in \Omega} s[k] \beta_k(r)$$



Create a vector $\boldsymbol{x} = (s[\boldsymbol{k}])_{\boldsymbol{k} \in \Omega} \in \mathbb{R}^N$

Measurement model (image formation):

$$y_m = \int_{\mathbb{R}^2} s(\mathbf{r}) \eta_m(\mathbf{r}) \, d\mathbf{r} + n[m] = \langle s, \eta_m \rangle + n[m], \ m = 1, \dots, M$$

 η_m : mth detector (analysis function)

n[m]: additive noise

$$[\mathbf{H}]_{m,\mathbf{k}} = \langle \eta_m, \beta_{\mathbf{k}} \rangle = \int_{\mathbb{R}^2} \eta_m(\mathbf{r}) \beta_{\mathbf{k}}(\mathbf{r}) d\mathbf{r}$$

Reshape into $\mathbf{H} \in \mathbb{R}^{M \times N}$: $y = \mathbf{H}x + n$

We have now reduced the problem to a linear algebra problem (given x, we can synthesize s(r))

Examples of Basis Functions

Shift-invariant representation: $\beta_{k}(x) = \beta(x - k)$

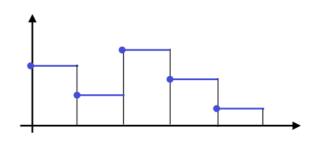
Separable generator: $\beta(\boldsymbol{x}) = \beta(x)\beta(y)$

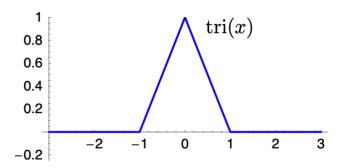
Pixel basis:

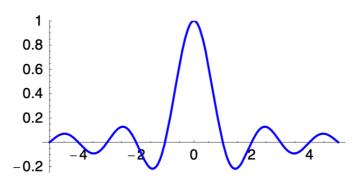
$$\beta(x) = \text{rect}(x)$$

$$\beta(x) = (\text{rect} * \text{rect})(x) = \text{tri}(x)$$

$$\beta(x) = \operatorname{sinc}(x)$$







Example 1: Diffraction-Limited Convolution

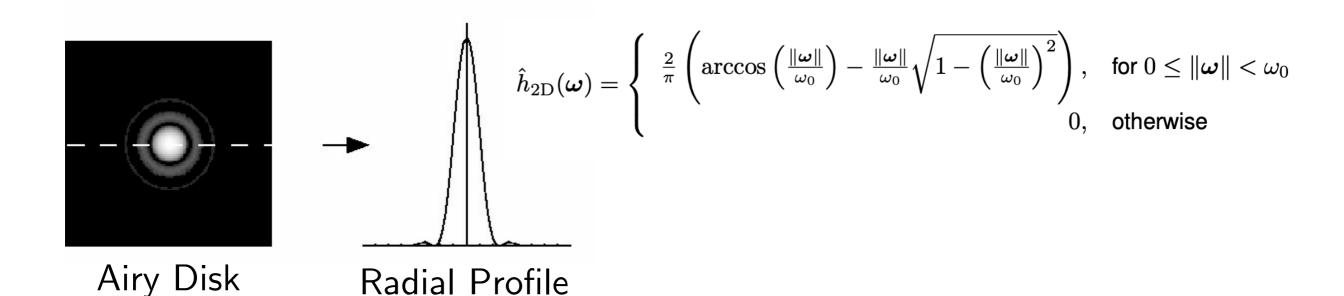
Hypothesis: $\hat{h}_{2D}(\boldsymbol{\omega}) = 0$ for $\|\boldsymbol{\omega}\| \ge \omega_0$ (diffraction-limited)

Discretization

 $\omega_0 \le \pi$ and representation in (separable) sinc basis $\beta_{k}(x) = \mathrm{sinc}(x - k)$

Analysis functions: $\eta_{\boldsymbol{m}}(\boldsymbol{x}) = h_{\mathrm{2D}}(\boldsymbol{x} - \boldsymbol{m})$

$$[\mathbf{H}]_{\boldsymbol{m},\boldsymbol{k}} = \langle \eta_{\boldsymbol{m}}(\boldsymbol{x}), \operatorname{sinc}(\boldsymbol{x} - \boldsymbol{k}) \rangle$$
$$= h_{2D}(\boldsymbol{m} - \boldsymbol{k})$$



Example 2: Magnetic Resonance Imaging (MRI)

Simplified forward model for MRI

$$\hat{s}(\boldsymbol{\omega}_m) = \int_{\mathbb{R}^2} s(\boldsymbol{x}) e^{-j\boldsymbol{\omega}_m^\mathsf{T} \boldsymbol{x}} d\boldsymbol{x}$$

 $\eta_m(\boldsymbol{x}) = \mathrm{e}^{\mathrm{j}\boldsymbol{\omega}_m^\mathsf{T} \boldsymbol{x}}$

(sampling of the Fourier transform)

suppose that $\|\boldsymbol{\omega}_m\|_2 < \pi$

ullet Discretization in separable $\sin c$ basis

$$[\mathbf{H}]_{m,\mathbf{k}} = \langle \eta_m(\mathbf{x}), \operatorname{sinc}(\mathbf{x} - \mathbf{k}) \rangle$$
$$= \langle e^{j\boldsymbol{\omega}_m^{\mathsf{T}}\mathbf{x}}, \operatorname{sinc}(\mathbf{x} - \mathbf{k}) \rangle = e^{-j\boldsymbol{\omega}_m^{\mathsf{T}}\mathbf{k}}$$

Example 3: Computed Tomography (CT)

Radon transform (line integrals)

Notation: $\boldsymbol{\theta} = (\cos \theta, \sin \theta) \in \mathbb{R}^2$

$$\mathscr{R}_{\theta}\{f\}(t) = \int_{\mathbb{R}^2} f(\boldsymbol{x}) \delta(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x} - t) d\boldsymbol{x}$$

Recall the Radon transform of a separable function $\varphi(\mathbf{x}) = \varphi_1(x)\varphi_2(y)$:

$$\mathscr{R}_{\theta}\{\varphi\}(t) = \varphi_{\theta}(t),$$

where

$$\varphi_{\theta}(t) = \frac{1}{|\cos \theta|} \varphi_1 \left(\frac{t}{\cos \theta}\right) * \frac{1}{|\sin \theta|} \varphi_2 \left(\frac{t}{\sin \theta}\right)$$

$$[\mathbf{H}]_{(i,j),\boldsymbol{n}} = \mathscr{R}_{\theta_i} \{ \varphi(\boldsymbol{x} - \boldsymbol{n}) \}(t_j) = \varphi_{\theta_i}(t_j - \boldsymbol{n}^\mathsf{T} \boldsymbol{\theta}_i)$$

Finite-Dimensional Inverse Problem

Discretized forward model:

$$y = Hx + n$$

$$oldsymbol{x} \in \mathbb{R}^N$$

$$\mathbf{H} \in \mathbb{R}^{M \times N}$$

$$oldsymbol{y} \in \mathbb{R}^M$$

$$oldsymbol{n} \in \mathbb{R}^M$$

• Inverse problem: How to efficiently recover x from y?